September's

Total Lunar
Eclipse
The whole western world can see the eclipse of September 27-28.

The current "tetrad" of four total eclipses of the Moon half-year apart will end with a bang on Sunday evening September 27th, for the Americas. Unlike last April's eclipse, which may not even have been precisely total (see the July issue, page 12), this one will carry the Moon through the umbra of Earth's shadow for a nice long hour and 12 minutes. Europe and Africa will see th eclipse happen on the local morning of the 28th. Observers in eastern North America can watch eve stage of the eclipse from beginning to end (weather permitting!), during convenient hours of late twiligh
Viewers in the Moon generally high in the sky.
Viewers in much of the American West will find the frst partial stage of the eclipse already in progress wh

But even on the West Coast, the Moon will lift above the eastern horizon before totality begins. The map on the facing page, and the diagram and timetable on page 28, tell what to expect at your location and when.
This eclipse is unusual in one particular way. It's the biggest eclipsed Moon you'll ever see! The year's closest lunar perigee occurs just 59 minutes before mid-eclipse The Moon (in Pisces) will appear 13\% larger in diamete than it did when eclipsed last April 4th.
The events that happen to a shadowed Moon are more complex and interesting than many people realize This eclipse, with its wide visibiity, convenient evening ity So family and friends ask you for the lowdown

LASER MOONSHOT During the total lunar eclipse of April 15, 2014, laser rangers at New Mexico's Apache Point Observatory shot powerful pulses at the Apollo 15 landing site through a 2.5 meter (100 -inch) telescope. The Apollo astronaut
left small corner reflectors on the Moon's surface. Ieft small corner reifectors on the Moon's surface. Astronomers can time a refiected photon's round
trip well enough now to track the Moon's position trip well ernough now to track the Moon's position
and orbital motion to millimeter accuracy. In thi ayd orital motion to milimeter accuracy. In this way they can watch vast amounts of subtie physics
at work, including the most precise tests of general relativity that are currently possible. Sunlight interferes with the measurements when the Moon fall, but not when the full Moon is eclipsed.

Stages of the Eclipse
A total lunar eclipse has five stages, with different hings to watch for at each
The first penumbral stage begins when the Moon' leading edge enters the pale outer fringe of Earth's
shadow the penumbra. But the shading is so weak that you won't see anything of the penumbra until the Moon is about halfway across it. During this eclipse, watch for slight darkening to become apparent on the Moon's celestial northeast side: its left side as seen from North

Morning of Sept, 28, TWO ECLIPSES AGO Above: Before dawn on October 8, 2014, Moon through a $160-\mathrm{mm} \mathrm{f} / 8$ refracor at Stansbury Park Observatory Complex in Utah.

WIDE VIEW THIS TIME Lef For your location, check whether the Moon will rise (or set) during some stage of the eccipse. An eclipsed Moon is always full, so the Sun sets (orrises) at almost the This means that apposite horiz moonrise or moonset always hap pens in a very bright sky!

America, its upper left side as seen from Europe. The penumbra is the region where an astronaut tanding on the Moon would see Earth covering only part of the Sun's face. The penumbral shading becomes stronger as the Moon moves deeper in.
The second stage is partial eclipse. This begins much more dramatically when the Moon's leading edge enters he umbra: Earth's inner shadow where the Sun is com pletely hidden. With a telescope, you can watch the edge the umbra slowly engulfing one lunar feature after nother (see the Crater Timings box on the facing page) s the entire sky begins to grow darker.
The partial phase will last just over an hour. As its

CRATER TIMING GUIDE Craters and spots that stand out well during a lunar eclipse are identified here. Approximate times when the umbra's edge will cross them are listed at right.
end approaches, only a final bright sliver remains out side the umbra. By this time the rest should already be showing a dim, foreboding reddish glow.
The third stage is total eclipse, beginning when the last rim of the Moon slips into the umbra. But the Moon won't black out: it's sure to glow some shade of intense orange or red. This red light is sunlight that has skimmed and bent through Earth's atmosphere, all around the edge of our globe, on its way to the Moon. In other words, it's light from all the sunrises and sunsets that ring our world at any given moment. An astronaut standing on the Moon would see the dark Earth thinly rimmed with brilliant orange from the Sun hidden behind it - brilliant enough to illuminate the lunar landscape around him an eerie red.

This umbral light can change a lot from one eclipse to the next. Two main factors affect its brightness and color. The first is simply how deeply the Moon goes into the umbra while passing through; the center of the umbra is much darker than its edges. At mid-eclipse this time, the Moon's south-southeastern edge will be only a quarter of a lunar diameter inside the umbra, so expect that side to be distinctly brighter than the rest.
The other factor is the state of Earth's atmosphere along the sunrise-sunset line. If the air is very clear, the eclipse is bright. But if a major volcanic eruption has recently polluted the stratosphere with thin global haze, a lunar eclipse wil ally almost black
naddition, blue light is refracted through Earth's upper atmosphere above the thick layers that produce the red sunrise-sunset colors. This
-ne-blue light colors the Moon a bit near the umbras
 gray, purple, and even green.
Time-lapse videos may show large "flying shadows" The umbra, caused by changing cloud-shadowing effects around the sunrise-sunset line as Earth turns and the Moon moves.
And then, as the Moon continues eastward along its orbit, events replay in reverse order. The Moon's edge re-emerges into sunlight, ending totality and beginning tage four: a partial eclipse again
When all of the Moon escapes the umbra, only the last, penumbral shading is left for stage five. By about 30 or 40 minutes later, nothing unusual remains.
We'll have more than two years' wait until the next otal eclipse of the Moon, on January 31, 2018. And that will be visible only from the Eastern Hemisphere and he western side of North America
The previous tetrad of lunar eclipses happened in 2003-04. The next begins on April 25, 2032.

Uranus Again

During the eclipse of October 8, 2014, eleven days short of a year before this one, the Moon was only about 1° from 6th-magnitude Uranus. This time Uranus is about 15° to the Moon's east. But take a look during a quiet few minutes if the Moon is high in a dark sky at your locaion while the eclipse is still total. Use the finder charts on page 49. Uranus is 15 times larger than the Moon the on this night, it's 8,000 times farther away. It will be magnitude 5.7. In the darkness of the total lunar eclipse, can you glimpse Uranus naked-eye? \uparrow

Although S\&T senior editor Alan MacRobert sees Earth totally eclipsing the Sun every clear evening from his house he really wants to see it happening from Mare Crisium.

Entrances		Exits	
Feature	UT	Feature	UT
Grimaldi	1:11	Grimaldi	3:31
Aristarchus	1:15	Billy	3:33
Billy	1:18	Campanus	3:37
Kepler	1:18	Tycho	3:38
Pytheas	1:25	Kepler	3:43
Copernicus	1:26	Aristarchus	3:45
Timocharis	1:28	Copernicus	3:51
Plato	1:30	Pytheas	3:53
Campanus	1:31	Timocharis	3:58
Aristoteles	1:38	Plato	4:04
Eudoxus	1:39	Manilius	4:05
Manilius	1:39	Dionysius	4:06
Menelaus	1:42	Menelaus	4:08
Tycho	1:43	Censorinus	4:11
Dionysius	1:45	Plinius	4:11
Plinius	1:46	Eudoxus	4:11
Censorinus	1:53	Aristoteles	4:12
Proclus	1:55	Goclenius	4:12
Taruntius	1:57	Langrenus	4:16
Coclenius	2:00	Taruntius	4:18
Langrenus	2:05	Proclus	4:20

	North	Total Eclipse of the Moon, Night of September 27-28, 2015					
	PENUMBRA		Eclipse event	EDT	CDT	MDT	PDT
			Penumbra first visible?	8:40 p.m.	7:40 p.m.	-	-
			Partial eclipse begins	9:07 p.m.	8:07 p.m.	7:07 p.m.	-
			Total eclipse begins	10:11 p.m.	9:17 p.m.	8:17 p.m.	7:17 p.m.
			Mid-eclipse	10:48 p.m.	9:48 p.m.	8:48 p.m.	7:48 p.m.
			Total eclipse ends	11:23 p.m.	10:23 p.m.	9:23 p.m.	8:23 p.m.
			Partial eclipse ends	12:27 a.m.	11:27 p.m.	10:27 p.m.	9:27 p.m.
			Penumbra last visible?	12:55 a.m.	11:55 p.m.	10:55 p.m.	9:55 p.m.

Crater Timings Sought!

 The size of Earth's umbra varies slightly from one eclipse to the next or reasons that are still unknown. For hen the edse of the umbra crose un marking during eclipses in lunar markigs durig eclipses. In the June issue (page 20) Roger Sirnott told of the massive analysis that he and his colleagues did of the 26,658 timings that are on record since 1842. And he called for readers to make timings during this upcoming eclipse, especiallybecause it offers a very similar repeat of the much-timed eclipse of Septem of the much- $27,1996$.
All you will need is a small telescor All you will need is a small telesco (use fairly high power), a timepiece that reads to the second, and a notead and pencil.
Check in advance that your watch or device is accurately set to the second (for instance, at time.gov/widget). The idea is to time when the umbra's edge - defined as where the shadow
changes brightness most abruptly crosses a feature's center. Record the crosses a features center. Record the time to at least the nearest 5 seconds. The photo at the top of the facing page labels some standard timing targets. The table above gives many rough predictions, so you don't get caug fat-footed. It's fine to skip some.
Please report your timings to Roger Sinnott at rsinnott@post.harvard.edu. We'll publish results in a future issue. You can become a part of lunar history

Telescopic Moon Map

The Moon shows fantastic detail in even the smallest telescope. And light pollution doesn't affect it a bit. In city or country, the Moon will be an intimate part of your to explore our closest neighbor world.

Lunar Features									
	Crater Names	58	Euler	116	Lalande	174	Liebig	232	Mee
	Anaximander	59	Lambert	117	Flammarion	175	Hippalus	233	Wilhelm
2	Anaximenes	60	Timocharis	118	Herschel	176	König	234	Tycho
3	Philoaus	61	Le Monnier	119	Hipparchus	177	Purbach	235	Saussure
4	Epigenes	62	Rämer	120	Horrocks	178	La Caille	236	Licetus
5	Goldschmidt	63	Struve	121	Taylor	179	Apianus	237	Barocius
6	w. Bond	64	Eddington	122	Torricelli	180	Playfair	238	Janssen
7	Barrow	65	Seleucus	123	Sirsalis	181	Sacrobosco	239	Fabricius
8	Meton	66	Pytheas	124	Hansteen	182	Wrottesley	240	
9	Pythagoras	67	Bessel	125	Letronne	183	Petavius	241	Wargentin
10	South	68	Vitruvius	126	Bonpland	184	Vieta	242	Phocylides
11	J. Herschel	69	Macrobius	127	Parry	185	Fourier	243	Schiller
12	Fontenelle	70	Krafft	128	Guericke	186	Doppelmayer	244	Longomontanus
13	Archytas	71	Cardanus	129	Davy	187	Vitello	245	Maginus
14	C. Mayer	72	Eratosthenes	130	Ptolemaeus	188	Campanus	246	Heraclitus
15	Gärtner	73	Manilius	131	Albategnius	189	Mercator	247	Lilius
16	Strabo	74	Menelaus	132	Halley	190	Pitatus	248	Cuvier
17	Harpalus	75	Plinius	133	Descartes	191	Hell	249	Clairaut
18	Bianchini	76	Dawes	134	Theophilus	192	Regiomontanus	250	Baco
19	Plato	77	Proclus	135	Mädler	193	Werner	251	Pitiscus
20	Alpine Valley	78	Picard	136	Isidorus	194	Aliacensis	252	Hommel
21	Aristoteles	79	Reiner Gamma	137	Capella	195	Pontanus	253	
22	Endymion	80	Marius	138	Gutenberg	196	Zagut	254	Steinheil
23	Teneriffe Mountains	81	Kepler	139	Goclenius	197	Lindenau	255	Watt
24	Mt. Pico	82	Copernicus	140	Langrenus	198	Piccolomini	256	Biela
25	Eudoxus	83	Ukert	141	La Pérouse	199	Neander	257	Zuchius
26	Bürg	84	Julius Caesar	142	Crüger	200	Reichenbach	258	Bettinus
27	Hercules	85	Ross	143	Billy	201	Stevinus	259	Scheiner
28	Atlas	86	Condorcet	144	Lassell	202	Snellius	260	Blancanus
29	Mercurius	87	Cavalerius	145	Alpetragius	203	Hase	261	Clavius
30	von Braun	88	Reiner	146	Alphonsus	204	Adams	262	
31	Mairan	89	Encke	147	Abulfeda	205	Ramsden	263	Pentland
32	Helicon	90	Hortensius	148	Almanon	206	Capuanus	264	Mutus
33	Le Verrier	91	Reinhold	149	Tacitus	207	Gauricus	265	Nearch
34	Mt. Piton	92	Pallas	150	Cyrillus	208	Deslandres	266	Rosenberger
35	Cassini	93	Murchison	151	Colombo	209	Lexell	267	Hagecius
36	Grove	94	Triesnecker	152	Vendelinus	210	Walter	268	Pontécoulant
37	Cepheus	95	Rima Hyginus	153	Lamé	211	Kaiser	269	Bailly
38	Franklin	96	Agrippa	154	Darwin	212	Gemma Frisius	270	Kircher
39	Messala	97	Arago	155	Mersenius	213	Rabbi Levi	271	Casatus
40	Delisle Diophantus	${ }_{99}^{98}$	Lamont Taruntus	156 157	Gassendi	214	Stiborius	272 273	Klaproth
42	Archimedes	100	Apollonius	158	Bullialdus	216	Furnerius	274	Moretus
43	Aristilus	101	Firmicus	159	Nicollet	217	Hainzel	275	Curtius
44	Autolycus	102	Hevelius	160	Straight Wall	218	Orontius	276	Simpelius
45	Linné	103	Lansberg	161	Thebit	219	Nasireddin	277	Schomberger
46	Posidonius	104	Gambart	162	Arzachel	220	Miller	278	Manzinus
47	Daniell	105	Mösting	163	Abenezra	221	Stöfler	279	Boguslawsky
48	Chacornac	106	Réaumur	164	Azophi	222	Faraday	280	Boussingault
49	Taurus Mountains	107	Rhaeticus	165	Geber	223	Maurolycus		
50	Cleomedes	108	Godin	166	Catharina	224	Buch		
51	Burckhardt	109	Delambre	167	Beaumont	225	Büsching	Apo	O Landing Sites
52	Geminus	110	Maskelyne	168	Fracastorius	226	Nicolai	A11	Apollo 11
53	Berosus	111	Messier	169	Santbech	227	Metius	A12	Apollo 12
54	Hahn	112	Riccioli	170	Cook	228	Young	A14	Apollo 14
55	Russell	113	Grimaldi	171	Holden	229	Fraunhofer	A15	Apollo 15
56	Schröter's Valley	114	Flamsteed	172	Byrgius	230	Inghirami	A16	Apollo 16
57	Aristarchus	115	Fra Mauro	173	Cavendish	231	Schickard	A17	Apollo 17

