Researchers have found that 'Oumuamua — the first confirmed object to enter the solar system from interstellar space — was a comet, releasing just enough gas to subtly change its course.

'Oumuamua
An artist's impression shows 'Oumuamua as a comet.
ESA / Hubble / NASA / ESO / M. Kornmesser

In October 2017 the robotic telescope  Pan-STARRS in Hawai'i detected an unusual object entering the solar system from interstellar space. In the days after the discovery, every available telescope, including Hubble, was aimed at the interloper to collect as much information as possible before it left our system. Since then, astronomers worldwide have been reviewing the observations, trying to squeeze as much knowledge as possible about the unexpected visitor.

Named ‘Oumuamua (“first scout” or “first visitor” in Hawaiian), this envoy from the stars appeared to have the form of an elongated cigar — or a flattened pancake, depending whom you ask — 800 meters (0.5 mile) long and 10 times thinner. It came tumbling into the solar system from above the plane of the planets, only to have its path changed by the by the Sun’s gravitational pull before leaving out system again, never to return.

Since its detection, astronomers have had a hard time determining what 'Oumuamua is made of. It passed very close to the Sun, within Mercury’s orbit, yet it didn’t show any signs of outgassing, such as a cloudlike coma or tail — signatures that would have revealed an icy composition akin to the solar system’s comets. Instead, 'Oumuamua looked like an inactive, dark-red, solid chunk. Astronomers thought it was probably made of solid rock weathered by space radiation, an asteroid kicked out from a planetary system forming beyond our own.

But an international team of astronomers led by Marco Micheli (ESA SSA-NEO Coordination Centre, Italy) has found unexpected clues about 'Oumuamua’s nature by looking carefully at the path it followed in and out of our system. This path didn’t quite fit what was expected of a body solely influenced by the gravitational pull of the Sun, planets, and large asteroids. The team observed small deviations that pointed to the action of a non-gravitational force.

This graphic depicts 'Oumuamua's path through the solar system. Hubble Space Telescope observations enabled scientists to see small deviations from the object's expected path under solely gravitational influences.
NASA / JPL-Caltech

Micheli and colleagues considered several scenarios to explain the deviations, including pressure from solar radiation or magnetic interaction with the solar wind, but those options didn’t quite fit the data. Instead, the motion observed is consistent with weak outgassing triggered by proximity to the Sun, as observed in other comets. The results appear in the June 28th Nature.

Researchers calculated that the force needed to push 'Oumuamua’s away from the expected path is fairly small – around 0.1% of the Sun’s gravitational pull. “'Oumuamua is a small object, and just a small amount of gas is needed to generate the force we measured,” Micheli says.

“The detection of the subtle non-gravitational acceleration of 'Oumuamua is exactly what you’d expect of weak outgassing towards the Sun,” says Alan Fitzsimmons (Queen’s University Belfast, UK), who wasn’t involved in the new study. “It’s a beautiful, careful analysis of the data.”

But if 'Oumuamua is a comet, why didn’t it appear as one? Why didn’t we see evident outgassing activity as it approached the Sun? Perhaps the object lost most of its ice before leaving its home system billions of years ago, or maybe its ice slowly seeped away during the long interstellar voyage. Or, it could be that the comet has naturally low outgassing levels. Finally, it could be that the type of gas released, such as water or carbon dioxide, wasn’t visible.

Fitzsimmons points to examples within our own solar system, such as comet 2P/Encke, known for a lack of small dust, or the near-Earth object Don Quixote, where after many years the Spitzer Space Telescope revealed a faint coma of carbon dioxide. If 'Oumuamua had released the same relative amounts of gas and dust as these objects, we wouldn't have seen the coma.

Deciding whether 'Oumuamua is indeed a comet rather than an asteroid doesn’t just add to astronomy trivia. Current planet-forming scenarios predict that as planets grow around a star, gravitational interactions should throw large amounts of material out of the system. Most of this material would be made of icy comets. If these scenarios are correct, chances are the first interstellar object wouldn’t have been rocky. If we accept that 'Oumuamua is indeed a comet, that would better fit current theoretical predictions.

Tags

'Oumuamua

Comments


Image of Robert-LaPorta

Robert-LaPorta

June 27, 2018 at 8:06 pm

Or it may be a subtle mid-course correction on its next leg of interstellar exploration.

You must be logged in to post a comment.

Image of Donald-Sime

Donald-Sime

June 29, 2018 at 5:49 pm

“'Oumuamua is a small object, and just a small amount of gas is needed to generate the force we measured,”
I wonder how the RS-25s (shuttle main engine) specific impulse (Isp) of 452 seconds (4.43 km/s) in a vacuum compares to that "small amount"

Could "It came tumbling into the solar system" be rewritten as "Reoriented to its new course as it entered the system"

LGM

You must be logged in to post a comment.

Image of stevengilsdorf

stevengilsdorf

June 30, 2018 at 2:41 pm

Perhaps we just had the good fortune of seeing a comet that is not so unusual, but a type that is uncommonly observed.

You must be logged in to post a comment.

Image of Jacques Millet

Jacques Millet

July 2, 2018 at 10:39 am

It's a rocket!!! You nuts!

Seriously. First, it's extremely long for its short axis. It's a strange red color. The most extraordinary thing, I think, is how close it came to the Sun. The closest star is 4 light-years away. Can you imagine what are the odds of an asteroid coming from so far getting so close to the Sun? The first object we see coming from outer space does not come as close as the orbit of Jupiter, or Uranus... it"s INSIDE THE ORBIT OF MERCURY!!! I can't understand how even serious astronomers who see aliens in the Tabby star or the first pulsar didn't see this one.

To me, the best explanation is a probe that was aimed at the Sun but had a mishap shortly before maneuvers to put it in orbit or other plan. It would explain its slow tumbling. Hey! Seven hours for such a small and very elongated object is not fast! Don't you think.

You must be logged in to post a comment.

Image of goodricke1

goodricke1

July 5, 2018 at 3:07 pm

Of course if it was at the orbit of Jupiter then we wouldn't have seen it... but I agree there are several aspects of this apparition which just don't add up.

You must be logged in to post a comment.

You must be logged in to post a comment.