Review Exercises for Chapter 4


 Evan McLaughlin
 2 years ago
 Views:
Transcription
1 _R.qd // : PM Pge CHAPTER Integrtion Review Eercises for Chpter In Eercises nd, use the grph of to sketch grph of f. To print n enlrged cop of the grph, go to the wesite In Eercises 8, find the indefinite integrl Find the prticulr solution of the differentil eqution f whose grph psses through the point,.. Find the prticulr solution of the differentil eqution f whose grph psses through the point, nd is tngent to the line 5 t tht point. Slope Fields In Eercises nd, differentil eqution, point, nd slope field re given. Sketch two pproimte solutions of the differentil eqution on the slope field, one of which psses through the given point. (To print n enlrged cop of the grph, go to the wesite Use integrtion to find the prticulr solution of the differentil eqution nd use grphing utilit to grph the solution..,,.,, f sin 5 cos sec 5 f f. Velocit nd Accelertion An irplne tking off from runw trvels feet efore lifting off. The irplne strts from rest, moves with constnt ccelertion, nd mkes the run in seconds. With wht speed does it lift off?. Velocit nd Accelertion The speed of cr trveling in stright line is reduced from 5 to miles per hour in distnce of feet. Find the distnce in which the cr cn e rought to rest from miles per hour, ssuming the sme constnt decelertion. 5. Velocit nd Accelertion A ll is thrown verticll upwrd from ground level with n initil velocit of feet per second. How long will it tke the ll to rise to its mimum height? Wht is the mimum height? (c) When is the velocit of the ll onehlf the initil velocit? (d) Wht is the height of the ll when its velocit is onehlf the initil velocit?. Velocit nd Accelertion Repet Eercise 5 for n initil velocit of meters per second. In Eercises 7, use sigm nottion to write the sum n n n n... n n n n... n In Eercises, use the properties of summtion nd Theorem. to evlute the sum. i. i. i. i. 5. Write in sigm nottion the sum of the first ten positive odd integers, the sum of the cues of the first positive integers, nd (c) 8... n.. Evlute ech sum for,, 5,, nd 5 7. See for workedout solutions to oddnumered eercises. 5 5 i i 5 i (c) (d) 5 i i i i... n n i i ii i 5 i i i 7
2 _R.qd // : PM Pge 7 REVIEW EXERCISES 7 In Eercises 7 nd 8, use upper nd lower sums to pproimte the re of the region using the indicted numer of suintervls of equl width In Eercises, use the it process to find the re of the region etween the grph of the function nd the is over the given intervl. Sketch the region.. Use the it process to find the re of the region ounded 5,,, nd 5.. Consider the region ounded m,,, nd. Find the upper nd lower sums to pproimte the re of the region when. Find the upper nd lower sums to pproimte the re of the region when n. (c) Find the re of the region letting n pproch infinit in oth sums in prt. Show tht in ech cse ou otin the formul for the re of tringle. In Eercises 5 nd, write the it s definite integrl on the intervl [, ], where is n point in the ith suintervl Limit n i n i In Eercises 7 nd 8, set up definite integrl tht ields the re of the region. (Do not evlute the integrl.) ,,.,,. 5,,.,, c i i c i c i c i i 7. f 8. f 8 Intervl,, In Eercises nd, sketch the region whose re is given the definite integrl. Then use geometric formul to evlute the integrl (c) f g. (d) 5f.. Given f nd f, evlute (c) In Eercises 5, use the Fundmentl Theorem of Clculus to evlute the definite integrl. (d).. 5. t t dt sin d 5. In Eercises 5 5, sketch the grph of the region whose re is given the integrl, nd find the re In Eercises 57 nd 58, determine the re of the given region. 57. sin 58. cos 5. Given f nd g, evlute f g. f. f. π f. f g. f. t dt 5 sec t dt π π π
3 _R.qd // : PM Pge 8 8 CHAPTER Integrtion In Eercises 5 nd, sketch the region ounded the grphs of the equtions, nd determine its re. Use integrtion to find the prticulr solution of the differentil eqution nd use grphing utilit to grph the solution. 5..,,, sec,,, 8.,., sin,, In Eercises nd, find the verge vlue of the function over the given intervl. Find the vlues of t which the function ssumes its verge vlue, nd grph the function.. f,., f,, In Eercises, use the Second Fundmentl Theorem of Clculus to find F... F F t t dt t dt 5. F t. F t dt csc t dt 7. sin cos 7. sin sin cos cos sin 77. tn n sec, n 78. sec tn 7. sec sec 8. In Eercises 8 88, evlute the definite integrl. Use grphing utilit to verif our result cos 88. In Eercises 7 8, find the indefinite integrl d tn cot csc d 8 sin Slope Fields In Eercises 8 nd, differentil eqution, point, nd slope field re given. Sketch two pproimte solutions of the differentil eqution on the slope field, one of which psses through the given point. (To print n enlrged cop of the grph, go to the wesite In Eercises nd, find the re of the region. Use grphing utilit to verif our result Fuel Cost Gsoline is incresing in price ccording to the eqution p..t, where p is the dollr price per gllon nd t is the time in ers, with t representing. An utomoile is driven 5, miles er nd gets M miles per gllon. The nnul fuel cost is C 5, M Estimte the nnul fuel cost in nd 5.. Respirtor Ccle After eercising for few minutes, person hs respirtor ccle for which the rte of ir intke is t v.75 sin. Find the volume, in liters, of ir inhled during one ccle integrting the function over the intervl,. In Eercises 5 8, use the Trpezoidl Rule nd Simpson s Rule with n, nd use the integrtion cpilities of grphing utilit, to pproimte the definite integrl. Compre the results cos 8. sin t t p dt. cos sin π π
4 _R.qd // : PM Pge P.S. Prolem Solving P.S. Prolem Solving See for workedout solutions to oddnumered eercises.. Let L >. t dt, Find L. Find L nd L. (c) Use grphing utilit to pproimte the vlue of (to three deciml plces) for which L. (d) Prove tht L L L for ll positive vlues of nd.. Let F sin t dt. Use grphing utilit to complete the tle. Let G F sin t dt. Use grphing utilit to complete the tle nd estimte G. (c) Use the definition of the derivtive to find the ect vlue of the it G. In Eercises nd, write the re under the grph of the given function defined on the given intervl s it. Then use computer lger sstem to evlute the sum in prt, nd (c) evlute the it using the result of prt.., Hint: F F G n i nn n n n i., 5, Hint: n i 5 n n n n i 5. The Fresnel function S is defined the integrl S sin t dt , Grph the function sin on the intervl,. Use the grph in prt to sketch the grph of S on the intervl,. (c) Locte ll reltive etrem of S on the intervl,. (d) Locte ll points of inflection of S on the intervl,.. The TwoPoint Gussin Qudrture Approimtion for f is f f f. Use this formul to pproimte cos. Find the error of the pproimtion. Use this formul to pproimte. (c) Prove tht the TwoPoint Gussin Qudrture Approimtion is ect for ll polnomils of degree or less. 7. Archimedes showed tht the re of prolic rch is equl to the product of the se nd the height (see figure). Grph the prolic rch ounded nd the is. Use n pproprite integrl to find the re A. Find the se nd height of the rch nd verif Archimedes formul. (c) Prove Archimedes formul for generl prol. 8. Glileo Glilei (5 ) stted the following proposition concerning flling ojects: The time in which n spce is trversed uniforml ccelerting o is equl to the time in which tht sme spce would e trversed the sme o moving t uniform speed whose vlue is the men of the highest speed of the ccelerting o nd the speed just efore ccelertion egn. Use the techniques of this chpter to verif this proposition.. The grph of the function f consists of the three line segments joining the points,,,,,, nd 8,. The function F is defined the integrl F f t dt. Sketch the grph of f. Complete the tle. F h (c) Find the etrem of F on the intervl, 8. (d) Determine ll points of inflection of F on the intervl, 8.
5 _R.qd // : PM Pge CHAPTER Integrtion. A cr is trveling in stright line for hour. Its velocit v in miles per hour t siminute intervls is shown in the tle.. Prove. Prove t hours v mi/h t hours v mi/h. Use n pproprite Riemnn sum to evlute the it. Use n pproprite Riemnn sum to evlute the it 5. Suppose tht f is integrle on, nd < m f M for ll in the intervl,. Prove tht m f M. Use this result to estimte.. Let f e continuous on the intervl, where f f on,. Show tht Use the result in prt to evlute (c) Use the result in prt to evlute Produce resonle grph of the velocit function v grphing these points nd connecting them with smooth curve. Find the open intervls over which the ccelertion is positive. (c) Find the verge ccelertion of the cr (in miles per hour squred) over the intervl,.. (d) Wht does the integrl vt dt signif? Approimte this integrl using the Trpezoidl Rule with five suintervls. (e) Approimte the ccelertion t t.8. t f t t dt f v dv dt. f f f f.... n. n n n 5. n n f f f. sin sin sin. 7. Verif tht n nn n i i showing the following. i i i i n n i i (c) n nn n i i 8. Prove tht if f is continuous function on closed intervl,, then f f.. Let I f where f is shown in the figure. Let Ln nd Rn represent the Riemnn sums using the lefthnd endpoints nd righthnd endpoints of n suintervls of equl width. (Assume n is even.) Let Tn nd Sn e the corresponding vlues of the Trpezoidl Rule nd Simpson s Rule. For n n, list Ln, Rn, Tn, nd I in incresing order. Approimte S.. The sine integrl function sin t Si dt t f i is often used in engineering. The function f t sin t is not t defined t t, ut its it is s t. So, define f. Then f is continuous everwhere. Use grphing utilit to grph Si. At wht vlues of does Si hve reltive mim? (c) Find the coordintes of the first inflection point where >. (d) Decide whether Si hs n horizontl smptotes. If so, identif ech.
The Trapezoidal Rule
SECTION. Numericl Integrtion 9 f Section. The re of the region cn e pproimted using four trpezoids. Figure. = f( ) f( ) n The re of the first trpezoid is f f n. Figure. = Numericl Integrtion Approimte
More informationThe Trapezoidal Rule
_.qd // : PM Pge 9 SECTION. Numericl Integrtion 9 f Section. The re of the region cn e pproimted using four trpezoids. Figure. = f( ) f( ) n The re of the first trpezoid is f f n. Figure. = Numericl Integrtion
More information4.6 Numerical Integration
.6 Numericl Integrtion 5.6 Numericl Integrtion Approimte definite integrl using the Trpezoidl Rule. Approimte definite integrl using Simpson s Rule. Anlze the pproimte errors in the Trpezoidl Rule nd Simpson
More informationTime in Seconds Speed in ft/sec (a) Sketch a possible graph for this function.
4. Are under Curve A cr is trveling so tht its speed is never decresing during 1second intervl. The speed t vrious moments in time is listed in the tle elow. Time in Seconds 3 6 9 1 Speed in t/sec 3 37
More informationCalculus AB Section I Part A A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION
lculus Section I Prt LULTOR MY NOT US ON THIS PRT OF TH XMINTION In this test: Unless otherwise specified, the domin of function f is ssumed to e the set of ll rel numers for which f () is rel numer..
More informationChapter 5 1. = on [ 1, 2] 1. Let gx ( ) e x. . The derivative of g is g ( x) e 1
Chpter 5. Let g ( e. on [, ]. The derivtive of g is g ( e ( Write the slope intercept form of the eqution of the tngent line to the grph of g t. (b Determine the coordinte of ech criticl vlue of g. Show
More informationWhat Is Calculus? 42 CHAPTER 1 Limits and Their Properties
60_00.qd //0 : PM Pge CHAPTER Limits nd Their Properties The Mistress Fellows, Girton College, Cmridge Section. STUDY TIP As ou progress through this course, rememer tht lerning clculus is just one of
More informationCalculus AB. For a function f(x), the derivative would be f '(
lculus AB Derivtive Formuls Derivtive Nottion: For function f(), the derivtive would e f '( ) Leiniz's Nottion: For the derivtive of y in terms of, we write d For the second derivtive using Leiniz's Nottion:
More informationMath 190 Chapter 5 Lecture Notes. Professor Miguel Ornelas
Mth 19 Chpter 5 Lecture Notes Professor Miguel Ornels 1 M. Ornels Mth 19 Lecture Notes Section 5.1 Section 5.1 Ares nd Distnce Definition The re A of the region S tht lies under the grph of the continuous
More informationTopics Covered AP Calculus AB
Topics Covered AP Clculus AB ) Elementry Functions ) Properties of Functions i) A function f is defined s set of ll ordered pirs (, y), such tht for ech element, there corresponds ectly one element y.
More informationMA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.
MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.
More informationInterpreting Integrals and the Fundamental Theorem
Interpreting Integrls nd the Fundmentl Theorem Tody, we go further in interpreting the mening of the definite integrl. Using Units to Aid Interprettion We lredy know tht if f(t) is the rte of chnge of
More informationFundamental Theorem of Calculus
Fundmentl Theorem of Clculus Recll tht if f is nonnegtive nd continuous on [, ], then the re under its grph etween nd is the definite integrl A= f() d Now, for in the intervl [, ], let A() e the re under
More informationx ) dx dx x sec x over the interval (, ).
Curve on 6 For , () Evlute the integrl, n (b) check your nswer by ifferentiting. ( ). ( ). ( ).. 6. sin cos 7. sec csccot 8. sec (sec tn ) 9. sin csc. Evlute the integrl sin by multiplying the numertor
More informationCalculus Module C21. Areas by Integration. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved.
Clculus Module C Ares Integrtion Copright This puliction The Northern Alert Institute of Technolog 7. All Rights Reserved. LAST REVISED Mrch, 9 Introduction to Ares Integrtion Sttement of Prerequisite
More information( ) where f ( x ) is a. AB Calculus Exam Review Sheet. A. Precalculus Type problems. Find the zeros of f ( x).
AB Clculus Exm Review Sheet A. Preclculus Type prolems A1 Find the zeros of f ( x). This is wht you think of doing A2 A3 Find the intersection of f ( x) nd g( x). Show tht f ( x) is even. A4 Show tht f
More information( ) where f ( x ) is a. AB Calculus Exam Review Sheet. A. Precalculus Type problems. Find the zeros of f ( x).
AB Clculus Exm Review Sheet A. Preclculus Type prolems A1 Find the zeros of f ( x). This is wht you think of doing A2 A3 Find the intersection of f ( x) nd g( x). Show tht f ( x) is even. A4 Show tht f
More information( ) Same as above but m = f x = f x  symmetric to yaxis. find where f ( x) Relative: Find where f ( x) x a + lim exists ( lim f exists.
AP Clculus Finl Review Sheet solutions When you see the words This is wht you think of doing Find the zeros Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor Find
More informationsec x over the interval (, ). x ) dx dx x 14. Use a graphing utility to generate some representative integral curves of the function Curve on 5
Curve on Clcultor eperience Fin n ownlo (or type in) progrm on your clcultor tht will fin the re uner curve using given number of rectngles. Mke sure tht the progrm fins LRAM, RRAM, n MRAM. (You nee to
More information( ) as a fraction. Determine location of the highest
AB Clculus Exm Review Sheet  Solutions A. Preclculus Type prolems A1 A2 A3 A4 A5 A6 A7 This is wht you think of doing Find the zeros of f ( x). Set function equl to 0. Fctor or use qudrtic eqution if
More informationAB Calculus Review Sheet
AB Clculus Review Sheet Legend: A Preclculus, B Limits, C Differentil Clculus, D Applictions of Differentil Clculus, E Integrl Clculus, F Applictions of Integrl Clculus, G Prticle Motion nd Rtes This is
More information4.4 Areas, Integrals and Antiderivatives
. res, integrls nd ntiderivtives 333. Ares, Integrls nd Antiderivtives This section explores properties of functions defined s res nd exmines some connections mong res, integrls nd ntiderivtives. In order
More informationKEY CONCEPTS. satisfies the differential equation da. = 0. Note : If F (x) is any integral of f (x) then, x a
KEY CONCEPTS THINGS TO REMEMBER :. The re ounded y the curve y = f(), the is nd the ordintes t = & = is given y, A = f () d = y d.. If the re is elow the is then A is negtive. The convention is to consider
More informationArc Length and Surfaces of Revolution. Find the arc length of a smooth curve. Find the area of a surface of revolution. <...
76 CHAPTER 7 Applictions of Integrtion The Dutch mthemticin Christin Hugens, who invented the pendulum clock, nd Jmes Gregor (6 675), Scottish mthemticin, oth mde erl contriutions to the prolem of finding
More informationSection 4.8. D v(t j 1 ) t. (4.8.1) j=1
Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions
More informationSection 6: Area, Volume, and Average Value
Chpter The Integrl Applied Clculus Section 6: Are, Volume, nd Averge Vlue Are We hve lredy used integrls to find the re etween the grph of function nd the horizontl xis. Integrls cn lso e used to find
More informationFINALTERM EXAMINATION 9 (Session  ) Clculus & Anlyticl GeometryI Question No: ( Mrs: )  Plese choose one f ( x) x According to PowerRule of differentition, if d [ x n ] n x n n x n n x + ( n ) x n+
More informationLINEAR ALGEBRA APPLIED
5.5 Applictions of Inner Product Spces 5.5 Applictions of Inner Product Spces 7 Find the cross product of two vectors in R. Find the liner or qudrtic lest squres pproimtion of function. Find the nthorder
More information5.1 How do we Measure Distance Traveled given Velocity? Student Notes
. How do we Mesure Distnce Trveled given Velocity? Student Notes EX ) The tle contins velocities of moving cr in ft/sec for time t in seconds: time (sec) 3 velocity (ft/sec) 3 A) Lel the xxis & yxis
More informationINTRODUCTION TO INTEGRATION
INTRODUCTION TO INTEGRATION 5.1 Ares nd Distnces Assume f(x) 0 on the intervl [, b]. Let A be the re under the grph of f(x). b We will obtin n pproximtion of A in the following three steps. STEP 1: Divide
More information5.1 Estimating with Finite Sums Calculus
5.1 ESTIMATING WITH FINITE SUMS Emple: Suppose from the nd to 4 th hour of our rod trip, ou trvel with the cruise control set to ectl 70 miles per hour for tht two hour stretch. How fr hve ou trveled during
More informationFirst Semester Review Calculus BC
First Semester Review lculus. Wht is the coordinte of the point of inflection on the grph of Multiple hoice: No lcultor y 3 3 5 4? 5 0 0 3 5 0. The grph of piecewiseliner function f, for 4, is shown below.
More informationy = f(x) This means that there must be a point, c, where the Figure 1
Clculus Investigtion A Men Slope TEACHER S Prt 1: Understnding the Men Vlue Theorem The Men Vlue Theorem for differentition sttes tht if f() is defined nd continuous over the intervl [, ], nd differentile
More informationChapter 8.2: The Integral
Chpter 8.: The Integrl You cn think of Clculus s doulewide triler. In one width of it lives differentil clculus. In the other hlf lives wht is clled integrl clculus. We hve lredy eplored few rooms in
More information1 Part II: Numerical Integration
Mth 4 Lb 1 Prt II: Numericl Integrtion This section includes severl techniques for getting pproimte numericl vlues for definite integrls without using ntiderivtives. Mthemticll, ect nswers re preferble
More informationDistance And Velocity
Unit #8  The Integrl Some problems nd solutions selected or dpted from HughesHllett Clculus. Distnce And Velocity. The grph below shows the velocity, v, of n object (in meters/sec). Estimte the totl
More informationMath 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED
Mth 43 Section 4839 M TH 4: PM 6: PM Susn Wheeler swheeler@mth.uh.edu Office Hours: Wed 6: 7: PM Online ***NOTE LABS ARE MON AND WED t :3 PM to 3: pm ONLINE Approimting the re under curve given the type
More informationChapter 9 Definite Integrals
Chpter 9 Definite Integrls In the previous chpter we found how to tke n ntiderivtive nd investigted the indefinite integrl. In this chpter the connection etween ntiderivtives nd definite integrls is estlished
More information2 b. , a. area is S= 2π xds. Again, understand where these formulas came from (pages ).
AP Clculus BC Review Chpter 8 Prt nd Chpter 9 Things to Know nd Be Ale to Do Know everything from the first prt of Chpter 8 Given n integrnd figure out how to ntidifferentite it using ny of the following
More information5: The Definite Integral
5: The Definite Integrl 5.: Estimting with Finite Sums Consider moving oject its velocity (meters per second) t ny time (seconds) is given y v t = t+. Cn we use this informtion to determine the distnce
More informationAntiderivatives and Indefinite Integration
8 CHAPTER Integrtion Section EXPLORATION Finding Antiderivtives For ech derivtive, descrie the originl function F F F c F d F e F f F cos Wht strteg did ou use to find F? Antiderivtives nd Indefinite Integrtion
More informationSection Areas and Distances. Example 1: Suppose a car travels at a constant 50 miles per hour for 2 hours. What is the total distance traveled?
Section 5.  Ares nd Distnces Exmple : Suppose cr trvels t constnt 5 miles per hour for 2 hours. Wht is the totl distnce trveled? Exmple 2: Suppose cr trvels 75 miles per hour for the first hour, 7 miles
More informationCh AP Problems
Ch. 7.7. AP Prolems. Willy nd his friends decided to rce ech other one fternoon. Willy volunteered to rce first. His position is descried y the function f(t). Joe, his friend from school, rced ginst him,
More informationDefinite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 +
Definite Integrls 5 The re under curve cn e pproximted y dding up the res of rectngles. Exmple. Approximte the re under y = from x = to x = using equl suintervls nd + x evluting the function t the lefthnd
More informationKeys to Success. 1. MC Calculator Usually only 5 out of 17 questions actually require calculators.
Keys to Success Aout the Test:. MC Clcultor Usully only 5 out of 7 questions ctully require clcultors.. FreeResponse Tips. You get ooklets write ll work in the nswer ooklet (it is white on the insie)
More informationImproper Integrals with Infinite Limits of Integration
6_88.qd // : PM Pge 578 578 CHAPTER 8 Integrtion Techniques, L Hôpitl s Rule, nd Improper Integrls Section 8.8 f() = d The unounded region hs n re of. Figure 8.7 Improper Integrls Evlute n improper integrl
More informationPolynomials and Division Theory
Higher Checklist (Unit ) Higher Checklist (Unit ) Polynomils nd Division Theory Skill Achieved? Know tht polynomil (expression) is of the form: n x + n x n + n x n + + n x + x + 0 where the i R re the
More informationAP Calculus AB Unit 5 (Ch. 6): The Definite Integral: Day 12 Chapter 6 Review
AP Clculus AB Unit 5 (Ch. 6): The Definite Integrl: Dy Nme o Are Approximtions Riemnn Sums: LRAM, MRAM, RRAM Chpter 6 Review Trpezoidl Rule: T = h ( y + y + y +!+ y + y 0 n n) **Know how to find rectngle
More informationx = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b
CHAPTER 5. INTEGRALS 61 where nd x = b n x i = 1 (x i 1 + x i ) = midpoint of [x i 1, x i ]. Problem 168 (Exercise 1, pge 377). Use the Midpoint Rule with the n = 4 to pproximte 5 1 x e x dx. Some quick
More informationThe semester B examination for Algebra 2 will consist of two parts. Part 1 will be selected response. Part 2 will be short answer.
ALGEBRA B Semester Em Review The semester B emintion for Algebr will consist of two prts. Prt will be selected response. Prt will be short nswer. Students m use clcultor. If clcultor is used to find points
More informationONLINE PAGE PROOFS. Antidifferentiation and introduction to integral calculus
Antidifferentition nd introduction to integrl clculus. Kick off with CAS. Antiderivtives. Antiderivtive functions nd grphs. Applictions of ntidifferentition.5 The definite integrl.6 Review . Kick off
More informationGoals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite
Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite
More informationCalculus AB Bible. (2nd most important book in the world) (Written and compiled by Doug Graham)
PG. Clculus AB Bile (nd most importnt ook in the world) (Written nd compiled y Doug Grhm) Topic Limits Continuity 6 Derivtive y Definition 7 8 Derivtive Formuls Relted Rtes Properties of Derivtives Applictions
More informationChapter 3 Exponential and Logarithmic Functions Section 3.1
Chpter 3 Eponentil nd Logrithmic Functions Section 3. EXPONENTIAL FUNCTIONS AND THEIR GRAPHS Eponentil Functions Eponentil functions re nonlgebric functions. The re clled trnscendentl functions. The eponentil
More informationThe Fundamental Theorem of Calculus Part 2, The Evaluation Part
AP Clculus AB 6.4 Funmentl Theorem of Clculus The Funmentl Theorem of Clculus hs two prts. These two prts tie together the concept of integrtion n ifferentition n is regre by some to by the most importnt
More informationLesson 8.1 Graphing Parametric Equations
Lesson 8.1 Grphing Prmetric Equtions 1. rete tle for ech pir of prmetric equtions with the given vlues of t.. x t 5. x t 3 c. x t 1 y t 1 y t 3 y t t t {, 1, 0, 1, } t {4,, 0,, 4} t {4, 0,, 4, 8}. Find
More informationThe Fundamental Theorem of Calculus, Particle Motion, and Average Value
The Fundmentl Theorem of Clculus, Prticle Motion, nd Averge Vlue b Three Things to Alwys Keep In Mind: (1) v( dt p( b) p( ), where v( represents the velocity nd p( represents the position. b (2) v ( dt
More informationUnit Six AP Calculus Unit 6 Review Definite Integrals. Name Period Date NONCALCULATOR SECTION
Unit Six AP Clculus Unit 6 Review Definite Integrls Nme Period Dte NONCALCULATOR SECTION Voculry: Directions Define ech word nd give n exmple. 1. Definite Integrl. Men Vlue Theorem (for definite integrls)
More informationPolynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230
Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given
More informationChapter 7: Applications of Integrals
Chpter 7: Applictions of Integrls 78 Chpter 7 Overview: Applictions of Integrls Clculus, like most mthemticl fields, egn with tring to solve everd prolems. The theor nd opertions were formlized lter. As
More information( ) where f ( x ) is a. AB/BC Calculus Exam Review Sheet. A. Precalculus Type problems. Find the zeros of f ( x).
AB/ Clculus Exm Review Sheet A. Preclculus Type prolems A1 Find the zeros of f ( x). This is wht you think of doing A2 Find the intersection of f ( x) nd g( x). A3 Show tht f ( x) is even. A4 Show tht
More informationDefinition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim
Mth 9 Course Summry/Study Guide Fll, 2005 [1] Limits Definition of Limit: We sy tht L is the limit of f(x) s x pproches if f(x) gets closer nd closer to L s x gets closer nd closer to. We write lim f(x)
More informationDA 3: The Mean Value Theorem
Differentition pplictions 3: The Men Vlue Theorem 169 D 3: The Men Vlue Theorem Model 1: Pennslvni Turnpike You re trveling est on the Pennslvni Turnpike You note the time s ou pss the Lenon/Lncster Eit
More informationChapter 6 Techniques of Integration
MA Techniques of Integrtion Asst.Prof.Dr.Suprnee Liswdi Chpter 6 Techniques of Integrtion Recll: Some importnt integrls tht we hve lernt so fr. Tle of Integrls n+ n d = + C n + e d = e + C ( n ) d = ln
More informationSection 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40
Mth B Prof. Audrey Terrs HW # Solutions by Alex Eustis Due Tuesdy, Oct. 9 Section 5. #7,, 6,, 5; Section 5. #8, 9, 5,, 7, 3; Section 5.3 #4, 6, 9, 3, 6, 8, 3; Section 5.4 #7, 8,, 3, 5, 9, 4 5..7 Since
More informationMATH1013 Tutorial 12. Indefinite Integrals
MATH Tutoril Indefinite Integrls The indefinite integrl f() d is to look for fmily of functions F () + C, where C is n rbitrry constnt, with the sme derivtive f(). Tble of Indefinite Integrls cf() d c
More informationThomas Whitham Sixth Form
Thoms Whithm Sith Form Pure Mthemtics Unit C Alger Trigonometry Geometry Clculus Vectors Trigonometry Compound ngle formule sin sin cos cos Pge A B sin Acos B cos Asin B A B sin Acos B cos Asin B A B cos
More informationPrecalculus Due Tuesday/Wednesday, Sept. 12/13th Mr. Zawolo with questions.
Preclculus Due Tuesd/Wednesd, Sept. /th Emil Mr. Zwolo (isc.zwolo@psv.us) with questions. 6 Sketch the grph of f : 7! nd its inverse function f (). FUNCTIONS (Chpter ) 6 7 Show tht f : 7! hs n inverse
More informationBig idea in Calculus: approximation
Big ide in Clculus: pproximtion Derivtive: f (x) = df dx f f(x +h) f(x) =, x h rte of chnge is pproximtely the rtio of chnges in the function vlue nd in the vrible in very short time Liner pproximtion:
More informationMA Exam 2 Study Guide, Fall u n du (or the integral of linear combinations
LESSON 0 Chpter 7.2 Trigonometric Integrls. Bsic trig integrls you should know. sin = cos + C cos = sin + C sec 2 = tn + C sec tn = sec + C csc 2 = cot + C csc cot = csc + C MA 6200 Em 2 Study Guide, Fll
More informationIndefinite Integral. Chapter Integration  reverse of differentiation
Chpter Indefinite Integrl Most of the mthemticl opertions hve inverse opertions. The inverse opertion of differentition is clled integrtion. For exmple, describing process t the given moment knowing the
More informationAPPLICATIONS OF DEFINITE INTEGRALS
Chpter 6 APPICATIONS OF DEFINITE INTEGRAS OVERVIEW In Chpter 5 we discovered the connection etween Riemnn sums ssocited with prtition P of the finite closed intervl [, ] nd the process of integrtion. We
More informationSection 6.3 The Fundamental Theorem, Part I
Section 6.3 The Funmentl Theorem, Prt I (3//8) Overview: The Funmentl Theorem of Clculus shows tht ifferentition n integrtion re, in sense, inverse opertions. It is presente in two prts. We previewe Prt
More information7.8 IMPROPER INTEGRALS
7.8 Improper Integrls 547 the grph of g psses through the points (, ), (, ), nd (, ); the grph of g psses through the points (, ), ( 3, 3 ), nd ( 4, 4 );... the grph of g n/ psses through the points (
More informationand that at t = 0 the object is at position 5. Find the position of the object at t = 2.
7.2 The Fundmentl Theorem of Clculus 49 re mny, mny problems tht pper much different on the surfce but tht turn out to be the sme s these problems, in the sense tht when we try to pproimte solutions we
More informationSample Problems for the Final of Math 121, Fall, 2005
Smple Problems for the Finl of Mth, Fll, 5 The following is collection of vrious types of smple problems covering sections.8,.,.5, nd.8 6.5 of the text which constitute only prt of the common Mth Finl.
More informationAP Calculus AB First Semester Final Review
P Clculus B This review is esigne to give the stuent BSIC outline of wht nees to e reviewe for the P Clculus B First Semester Finl m. It is up to the iniviul stuent to etermine how much etr work is require
More information1 The Riemann Integral
The Riemnn Integrl. An exmple leding to the notion of integrl (res) We know how to find (i.e. define) the re of rectngle (bse height), tringle ( (sum of res of tringles). But how do we find/define n re
More information7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus
7.1 Integrl s Net Chnge nd 7. Ares in the Plne Clculus 7.1 INTEGRAL AS NET CHANGE Notecrds from 7.1: Displcement vs Totl Distnce, Integrl s Net Chnge We hve lredy seen how the position of n oject cn e
More information5 Accumulated Change: The Definite Integral
5 Accumulted Chnge: The Definite Integrl 5.1 Distnce nd Accumulted Chnge * How To Mesure Distnce Trveled nd Visulize Distnce on the Velocity Grph Distnce = Velocity Time Exmple 1 Suppose tht you trvel
More informationHIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time)
HIGHER SCHOOL CERTIFICATE EXAMINATION 998 MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time llowed Two hours (Plus 5 minutes reding time) DIRECTIONS TO CANDIDATES Attempt ALL questions ALL questions
More informationR(3, 8) P( 3, 0) Q( 2, 2) S(5, 3) Q(2, 32) P(0, 8) Higher Mathematics Objective Test Practice Book. 1 The diagram shows a sketch of part of
Higher Mthemtics Ojective Test Prctice ook The digrm shows sketch of prt of the grph of f ( ). The digrm shows sketch of the cuic f ( ). R(, 8) f ( ) f ( ) P(, ) Q(, ) S(, ) Wht re the domin nd rnge of
More informationInstantaneous Rate of Change of at a :
AP Clculus AB Formuls & Justiictions Averge Rte o Chnge o on [, ]:.r.c. = ( ) ( ) (lger slope o Deinition o the Derivtive: y ) (slope o secnt line) ( h) ( ) ( ) ( ) '( ) lim lim h0 h 0 3 ( ) ( ) '( ) lim
More informationMATH 115 FINAL EXAM. April 25, 2005
MATH 115 FINAL EXAM April 25, 2005 NAME: Solution Key INSTRUCTOR: SECTION NO: 1. Do not open this exm until you re told to begin. 2. This exm hs 9 pges including this cover. There re 9 questions. 3. Do
More informationChapter 6 Notes, Larson/Hostetler 3e
Contents 6. Antiderivtives nd the Rules of Integrtion.......................... 6. Are nd the Definite Integrl.................................. 6.. Are............................................ 6. Reimnn
More informationProperties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives
Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums  1 Riemnn
More informationChapters 4 & 5 Integrals & Applications
Contents Chpters 4 & 5 Integrls & Applictions Motivtion to Chpters 4 & 5 2 Chpter 4 3 Ares nd Distnces 3. VIDEO  Ares Under Functions............................................ 3.2 VIDEO  Applictions
More information7.1 Integral as Net Change Calculus. What is the total distance traveled? What is the total displacement?
7.1 Integrl s Net Chnge Clculus 7.1 INTEGRAL AS NET CHANGE Distnce versus Displcement We hve lredy seen how the position of n oject cn e found y finding the integrl of the velocity function. The chnge
More information1 The fundamental theorems of calculus.
The fundmentl theorems of clculus. The fundmentl theorems of clculus. Evluting definite integrls. The indefinite integrl new nme for ntiderivtive. Differentiting integrls. Tody we provide the connection
More informationMATH SS124 Sec 39 Concepts summary with examples
This note is mde for students in MTH124 Section 39 to review most(not ll) topics I think we covered in this semester, nd there s exmples fter these concepts, go over this note nd try to solve those exmples
More informationThe practical version
Roerto s Notes on Integrl Clculus Chpter 4: Definite integrls nd the FTC Section 7 The Fundmentl Theorem of Clculus: The prcticl version Wht you need to know lredy: The theoreticl version of the FTC. Wht
More informationThe area under the graph of f and above the xaxis between a and b is denoted by. f(x) dx. π O
1 Section 5. The Definite Integrl Suppose tht function f is continuous nd positive over n intervl [, ]. y = f(x) x The re under the grph of f nd ove the xxis etween nd is denoted y f(x) dx nd clled the
More informationAP * Calculus Review
AP * Clculus Review The Fundmentl Theorems of Clculus Techer Pcket AP* is trdemrk of the College Entrnce Emintion Bord. The College Entrnce Emintion Bord ws not involved in the production of this mteril.
More informationIntegration Techniques
Integrtion Techniques. Integrtion of Trigonometric Functions Exmple. Evlute cos x. Recll tht cos x = cos x. Hence, cos x Exmple. Evlute = ( + cos x) = (x + sin x) + C = x + 4 sin x + C. cos 3 x. Let u
More informationMath Calculus with Analytic Geometry II
orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove xxis) ( bove f under xxis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem
More informationCalculus 2: Integration. Differentiation. Integration
Clculus 2: Integrtion The reverse process to differentition is known s integrtion. Differentition f() f () Integrtion As it is the opposite of finding the derivtive, the function obtined b integrtion is
More informationMath& 152 Section Integration by Parts
Mth& 5 Section 7.  Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible
More informationP 1 (x 1, y 1 ) is given by,.
MA00 Clculus nd Bsic Liner Alger I Chpter Coordinte Geometr nd Conic Sections Review In the rectngulr/crtesin coordintes sstem, we descrie the loction of points using coordintes. P (, ) P(, ) O The distnce
More informationk ) and directrix x = h p is A focal chord is a line segment which passes through the focus of a parabola and has endpoints on the parabola.
Stndrd Eqution of Prol with vertex ( h, k ) nd directrix y = k p is ( x h) p ( y k ) = 4. Verticl xis of symmetry Stndrd Eqution of Prol with vertex ( h, k ) nd directrix x = h p is ( y k ) p( x h) = 4.
More information