The already tentative detection of phosphine is under heavy scrutiny from the scientific community, and a problem with the way ALMA’s software interpreted the original observation isn’t helping.

Venus in false-color
A false-color image shows what Venus looks like at ultraviolet and infrared wavelengths. (Blue shows observations at 283 nanometers, green represents 365 nm, and red representes 0.9 micron.)
PLANET-C Project Team

Jane Greaves (Cardiff University, UK) and colleagues published the possible discovery of phosphine gas in the cloud decks of Venus. The study garnered a lot of media attention because on Earth the molecule is a biosignature associated solely with life. At the very least, the sighting indicated that some unexpected chemistry was taking place. What’s more, the team couldn’t explain the presence of phosphine based on lightning, volcanoes, or meteorites.

A considerable amount of scientific scrutiny followed in the two months since the announcement. It’s too early for any definitive refutations, but four critical studies by prominent groups have already been put up on the arXiv preprint server. Therese Encrenaz (Paris Observatory), Ignas Snellen (Leiden Observatory), Mark Thompson (University of Hertfordshire), and Geronimo Villaneuva (NASA), each investigated the phosphine detection in different ways: by looking at old data, critiquing the statistical analysis, and suggesting that the phosphine signal was actually a misinterpretation of sulphur dioxide. All of these studies are still under review and Greaves’ team is currently preparing responses to them.

The phosphine line was seen first with the James Clerk Maxwell Telescope (JCMT) in 2016, and then again by the Atacama Large Millimeter/submillimeter Array (ALMA) in 2019. If the “methane on Mars” saga is illustrative, it could be years and many observations before phosphine on Venus is definitively verified or excluded. But the biggest recent upset to the story has come not from skeptics in the scientific community, but from ALMA itself.

ALMA Error

Greaves’s team released their calculations, models, and methods to the public immediately upon publication, so that other astronomers could vet the find. Greaves’ willingness to expose the study to scrutiny brought a large amount of attention to the observatories involved. That in turn led ALMA staff to find a problem with the data, specifically with the way Jupiter’s moon Calisto is used for the Venus calibration. (See the official statement here.)

“The publicity drew the attention of people with experience on other interferometers and ALMA experts specializing in other fields who made unexpected connections,” explains Anita Richards, the team’s ALMA liaison. “All of this has ultimately contributed to a new reduction.”

The problem arose because Venus is not a “standard” target for ALMA. The array of radio dishes spends most of its time looking at things that very far away, and thus very faint.

“Observing solar system objects is quite a small part of what ALMA does,” Greaves says. “ALMA is learning from this situation as well, in terms of future observations. We're not the only project affected. They've had to contact a number of other principal investigators.”

Looking for something barely visible (the phosphine absorption line) inside a large, bright, nearby object (Venus) creates large uncertainties with the interpretation of the subsequent data. It’s possible to see things that aren’t there, in the same way that looking at a bright light causes afterimages when your eyes are closed.

“ALMA told us, ‘we've never tried to push the limits of getting a faint line in this way before,’” Greaves says. “So it was a risk. And obviously I'm not comfortable with finding out the drawbacks afterwards. But we did want the community to look at it and that's what they have done.”



Looking Forward

This issue doesn’t necessarily mean that ALMA isn’t a good telescope for Venus. The team has now come up with a new observational strategy. They plan to take a longer exposure, pointing the telescope at slightly different places on the planet to make a kind of mosaic.

In the meantime, Greaves has performed a quick analysis on the “fixed” data from ALMA, undertaken in the past two weeks. The results have just been posted on the arXiv as part of the team’s response to Villaneuva’s critique. Although the phosphine feature has not disappeared, she says the signal isn’t as strong as it was before.

“When ALMA starts back up, which will be sometime next year, we hope to redo the observation,” she says. “Because now the feature just looks promising rather than really good." Whereas the initial announcement met the “five sigma gold standard,” in which the signal is five times stronger than the background noise, the fixed data no longer provide that certainty.

It has become evident that in this context, both ALMA and JCMT are working at the limit of their observatory capabilities. Astronomers must obtain new spectra yet it isn't clear that ground-based telescopes are up to the task. Even so, the team is moving forward with a new approach that will allow them to focus on distinct locations on the planet where they think phosphine is present, which is what they wanted to do originally.

“Because of the extra ‘wiggles’ in the signal, we were forced to average north and south detections across the planet,” Greaves says. “But now I'm excited to say we can go back and look at little bits of the planet, and hopefully say, ‘There it is, and there, and there.’”

Pioneer Venus
Ultraviolet image of Venus taken by the Pioneer Venus Orbiter
NASA

Worldwide attention combined with the team’s total transparency has resulted in prompt and widespread engagement, which Greaves admits has sometimes been difficult. But it also enabled this quick correction, which will benefit future ALMA users observing solar system objects. And it has inspired retrospective analyses, like the study coming out soon by Rakesh Mogul (Cal Poly Pomona), which found signals in the data from NASA’s Pioneer Venus spacecraft that are consistent with the detection of phosphine.

Overall, Greaves is pleased with the level of interest her study has inspired: “This process has sometimes been painful, but it's also been good for getting the data right."

Tags

phosphine

Comments


Image of Anthony Barreiro

Anthony Barreiro

November 17, 2020 at 4:56 pm

Spectroscopy, and eventually remote imaging, are our only tools for understanding exoplanets, but we can send robots to the other bodies in our solar system. Venus is really close to Earth. Several teams have proposed sending spacecraft to sample the atmosphere. Would that settle the question of whether there is phosphine in the atmosphere, and for that matter whether or not there are microbes living in the clouds?

You must be logged in to post a comment.

Image of Peter Wilson

Peter Wilson

November 18, 2020 at 7:27 pm

It might, but it might not.

There is no a priori reason to expect there are microbes living in Venus' clouds. Phosphine, H3P, is a very simple molecule. It may only be generated by life-forms on Earth, but that does not rule-out some non-biological process creating it on Venus. When chemists have trouble making a particular reactant on Earth, they often try turning up the heat and pressure, which is what we have on Venus. It's a natural pressure-cooker, with built-in sulfuric acid catalysts! More data would seem to be required before throwing a lot of money at it, looking for exo-life.

You must be logged in to post a comment.

Image of Anthony Barreiro

Anthony Barreiro

November 18, 2020 at 8:11 pm

Thanks for sharing your opinion and reasoning, Peter. I'm still curious -- could a robot sample Venus' atmosphere and prove or disprove the presence of phosphine and microbial life?

You must be logged in to post a comment.

Image of Peter Wilson

Peter Wilson

November 19, 2020 at 7:57 pm

There's a different kind of uncertainty principle at work here. If life is there, it can and will be found. But we go down-the-rabbit-hole trying to disprove it.

At least a dozen spacecraft have failed to find life-on-Mars, but none have proven it's not hiding there, somewhere. Venus is going to be the same: if life is there, its presence can be proven; but if life is not there, the negative result can never be established with certainty.

You must be logged in to post a comment.

Image of Andrew James

Andrew James

November 20, 2020 at 5:55 pm

"But we go down-the-rabbit-hole trying to disprove it."

I think you mean "But we go down-the-rabbit-hole trying to verify it."

The "uncertainty principle" is based on quantum mechanics and is unrelated to interpretation of observations made by using the scientific method. I do think you are misunderstanding the aims of research/investigating, as science does not prove or disprove some natural phenomena, but postulates based on theory to gain an explanation for the given experimental data.

Astronomy as a science has a huge problem when it comes to research, as we cannot go there and physically sample data, but has to heavily rely on deduction and reasoning from afar to draw some conclusion. e.g. Statistical methods based on comparing many similar objects. (Galaxies come to mind.) Meager information we have available means we have to be very rigid in verifying data before we are certain of new discoveries or change our theories to explain something.

Phosphine existence would be a possible indication of life, but is not the final panacea that proves it. What you infer above seems to say we shouldn't research anymore because "...the negative result can never be established with certainty."

If anything, negative results that are verified as negative, allow us to avoid investigating unproductive avenues, and come up with new experimental techniques to get a better understanding of held theories.

Hence the scientific question is "How much phosphine is in Venus' atmosphere?"

You must be logged in to post a comment.

Image of Andrew James

Andrew James

November 22, 2020 at 8:09 pm

Peter. This Berkeley science education site might interest you. "Misconceptions about science" here. https://undsci.berkeley.edu/teaching/misconceptions.php#b8

You must be logged in to post a comment.

Image of Anthony Barreiro

Anthony Barreiro

November 22, 2020 at 7:15 pm

Mars and Venus are different. Any Martian organisms would be underground. On Venus the microbes (as well as any phosphine) would be in the atmosphere. Both technically and epistemologically, it seems much easier to sample an atmosphere and say confidently that a molecule or a microbe either is or is not there, than to have to dig a kilometer or more beneath the surface of a planet to get a single sample.

Rather than relying solely on spectroscopy from Earth, I think we should send robots to Venus to look for phosphine and microbes in the atmosphere. I would leave it to the astrobiologists to decide how many robots and where exactly to send them.

(I don't think quantum uncertainty has anything to do with this question.)

You must be logged in to post a comment.

Image of Andrew James

Andrew James

November 22, 2020 at 8:52 pm

"There is no a priori reason to expect there are microbes living in Venus' clouds." Yet there is. The upper atmosphere of Venus has a region that could be suitable for life, which we deduce from observations of life in Earth's atmosphere. Hence testing a hypothesis by experiment verifies the evidence s either true/likely/unlikely/falsified.
The deeper question is "How important is it to establish that exo-life exists?"
Your words seem like some doctrinaire denouncing any search for knowledge through science is unnecessary and/or even dangerous.

You must be logged in to post a comment.

You must be logged in to post a comment.