Blue spiral galaxy with golden center
This ultraviolet image from the Galaxy Evolution Explorer spacecraft shows the spiral galaxy Messier 81.
NASA / JPL-Caltech / J. Huchra (Harvard-Smithsonian CfA)

By studying the formation and evolution of galaxies in the early universe, researchers seek to test the predictions of our leading theory of cosmology. New research suggests that the ultraviolet luminosity of low-mass galaxies just a few hundred million years after the Big Bang may provide a way to differentiate between cosmological models.

Supersonic Flows in the Early Universe

Two golden blobby structures amid a sea of blue
Simulation output showing the distribution of dense dark matter (orange), diffuse dark matter (blue), and high-velocity gas (white) in and surrounding two galaxy clusters.
TNG Collaboration

The leading theory of cosmology, called ΛCDM, describes a universe in which the matter that we see and touch every day (so-called “normal” or baryonic matter), makes up just 15% of all matter. The remaining 85% is dark matter, the nature of which is still unknown. While dark matter doesn’t have much of an impact on daily life today — a little dark matter probably passed through you while you read this sentence, and I’m guessing you didn’t notice! — it played a leading role in the early universe, dictating when, where, and at what masses the first galaxies formed.

While galaxies today are nestled within dark matter halos and arrayed along strands of dark matter scaffolding, dark matter and luminous matter weren’t always so aligned; ΛCDM predicts that in the very early universe, just after protons and electrons came together to form atoms, there were places where normal matter moved relative to dark matter with immense speed — faster than the local speed of sound. This supersonic relative motion complicated the formation of the first stars and galaxies, potentially altering early galaxy formation in a measurable way.

Suppression of Small-Scale Structure

plots of gas density
Comparison of the gas and stellar structures that form when the relative velocity between dark and normal matter is supersonic (left) and when there is no velocity difference between dark and normal matter (right).
Williams et al. 2024

Claire Williams (University of California, Los Angeles) and collaborators set out to understand the impact of this supersonic relative motion on the formation of low-mass galaxies. Using high-resolution fluid dynamics simulations, Williams’s team modeled the evolution of galaxies from a redshift of 200 to a redshift of 12. Their simulations tackled the cooling and condensing of molecular clouds, the ignition of the first stars, and the assembling of galaxies and star clusters.

The team found that having dark matter and normal matter moving at supersonic velocities relative to one another makes it harder for small galaxies to form; an order of magnitude fewer galaxies formed with stellar masses less than about 3 million solar masses when a velocity difference was present. Larger galaxies formed in the same numbers regardless of the velocity difference.

Clues from Ultraviolet Photons

Plot of the number of galaxies at each level of brightness
Modeled ultraviolet luminosity functions in the case of a supersonic velocity difference (pink line) and no velocity difference (blue line). The remaining colored data points are values derived from observations and the gray and black lines are model predictions.
Adapted from Williams et al. 2024

What effect do these findings have on quantities that we could potentially measure? The velocity difference affects the simulated galaxies’ star formation, which impacts their ultraviolet luminosity. This in turn determines the number of galaxies present at each ultraviolet luminosity, otherwise known as the ultraviolet luminosity function.

Williams’s team found key differences in these quantities at a redshift of 12 in areas with the velocity difference and areas without. In regions without the supersonic flow, small galaxies and star clusters form readily and begin to churn out stars. In regions with the supersonic flow, small galaxies are uncommon, and the gas that would have gone toward the smallest galaxies is instead captured by and spurs star formation in slightly more massive galaxies, in the 10-million-solar-mass range. This means that the ultraviolet luminosity function is lower for the smallest, faintest galaxies but is boosted for slightly brighter and more massive galaxies at a redshift of 12.

Because ultraviolet photons emitted in the distant past are shifted to longer wavelengths when they reach us today, the ultraviolet luminosity function is potentially measurable at infrared wavelengths with JWST. Ultra-deep JWST observations such as the NGDEEP survey may reach ultraviolet magnitudes as faint as −14, potentially revealing the small galaxies that can probe early-universe cosmology.


“The Supersonic Project: Lighting Up the Faint End of the JWST UV Luminosity Function,” Claire E. Williams et al 2024 ApJL 960 L16. doi:10.3847/2041-8213/ad1491

This post originally appeared on AAS Nova, which features research highlights from the journals of the American Astronomical Society.


You must be logged in to post a comment.